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1. Introduction

In the past few years there has been great research interest in the field of string phenomenol-

ogy, dealing with the question of stabilizing moduli fields at desirably high masses (for a

comprehensive review see e.g. [1, 2]). This was initiated by the KKLT scenario [3] which

suggested a way to obtain stabilized vacua from type IIB string theory building on earlier

works such as [4, 5]. Presently, one can find many extensions and improvements of the

original idea, the most notable and well established of which is the Large Volume Scenario

(LVS) [6, 7]. It builds up on the KKLT solutions by allowing for non-supersymmetric vacua

and by including perturbative corrections to the tree-level Kähler potential computed in [8].

Up to now the LVS has passed many consistency checks (e.g. [9]), but there is nevertheless

much space for improvement. The stabilization of the Kähler moduli requires manifolds

with negative Euler number, as well as non-perturbative effects which appear only if cer-

tain conditions are satisfied [10 – 12]. And it is of course desirable to have a working recipe

also for the other cases. The process of uplifting to a Minkowski or de Sitter vacuum also
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needs to be understood better because at present it seems that unnatural fine tuning of

parameters is necessary.

In this paper we propose another extension, namely the stabilization of moduli fields

that arise from the two-form R-R and NS-NS fields in type IIB string theory. These are

usually neglected in the literature, where the main focus is on stabilizing the volume of

the underlying manifold to large enough values. Here we will argue that the stabilization

of these so called axionic or non-geometric moduli is an important step in drawing the full

picture. We show that these axions may lead to changes in the process of stabilization of

the manifold volume and the other moduli. Additional motivation for considering them are

the possible cosmological consequences from their existence - they are good candidates for

driving inflation as recently suggested in [13]. Here we will try to put these considerations

on a firm ground, first showing explicitly the existence of a large number of flux compact-

ifications in F-theory that include axions. These are afterwards translated to the type IIB

compactifications on Calabi-Yau orientifolds, where the analysis of moduli stabilization is

better understood. Then we will be able to generalize the existing stabilization techniques

in order to accommodate for the new moduli.

For this reason we first try to give a brief introduction to type IIB flux compactifications

in section 2, including the axions in the general discussion. In section 3 we discuss the

stabilization procedure at tree level. We then show how stabilization changes after including

perturbative and D3-instanton corrections, in sections 4 and 5 respectively. We comment

on both the supersymmetric (KKLT) and non-supersymmetric (LVS) type of vacua. Based

on [14 – 16] we are also able to estimate the importance of the worldsheet instantons on the

moduli potential in section 6 and we see that the B2-moduli might substantially alter the

moduli stabilization procedure in the large volume limit. We conclude by listing the possible

applications of the axion moduli and suggestions for further research in section 7. Some of

the more technical calculations used in the main text are carried out in the appendices.

2. Flux compactifications in type IIB string theory

We will first briefly review flux compactifications of type IIB string theory establishing the

basic conventions and equations that will be used later.

The particle content of the type IIB supergravity is derived from the massless spec-

trum of the corresponding superstring type. The fermionic part consists of two left-handed

Majorana-Weyl gravitinos and two right-handed Majorana-Weyl dilatinos. As supersym-

metry holds and all fermionic degrees of freedom correspond exactly to bosonic ones, spec-

ifying either part of the effective action completely determines the other one. In this case

there are 32 supersymmetry generators, i.e. we are in the case of N = 2 supergravity in 10

dimensions. We will then concentrate on the bosonic part from here on, keeping in mind

the fermionic counterparts. In the bosonic spectrum we have NS-NS and R-R bosons.

The NS-NS bosons are the metric gMN , a two-form B2 (with corresponding field strength

H3 = dB2) and the dilaton φ. The R-R sector consists of corresponding form fields C0, C2,

and C4, the latter having a self-dual field strength F5 (also F1 = dC0 and F3 = dC2). In

order to obtain four dimensional models with N = 1 we need to compactify the theory on
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Calabi-Yau orientifold where fluxes are turned on under the conditions:

1

(2π)2α′

∫

Σα

F3 = nα ∈ Z,
1

(2π)2α′

∫

Σβ

H3 = mβ ∈ Z, (2.1)

with Σα,β three-cycles on the manifold. The resulting metric becomes a warped product

of flat four-dimensional spacetime and conformally Calabi-Yau orientifold.

The compactification as described in this picture essentially requires a Calabi-Yau

three-fold with O3/O7 orientifold planes, D3/D7 branes and the fluxes from (2.1). There

is however another description of the same physical situation if one considers F-theory on

an elliptically fibered Calabi-Yau four-fold [17]. There one needs to add only D3 branes and

fluxes and the theory is equivalent to the one of type IIB flux compactification. Since in

this way one obtains the orientifold ”for free” without the need of explicitly constructing

O3/O7 projection as in the type IIB picture, the F-theory approach is widely used for

realistic constructions. The rules of translating between the two pictures are simple to

use. A detailed summary can be found in section 4.1 of [18]. Here we will need to know

that (h1,1(CY4) − 1) corresponds to h1,1
+ and h2,1(CY4) to h1,1

− , where h1,1
+,− are the Hodge

numbers on the Calabi-Yau orientifold counting the even resp. odd parts of the (1, 1)-

homology under the orientifold projection. The tadpole cancellation condition that needs

to be satisfied in the F-theory picture is:

1

(2π)2α′

∫

H3 ∧ F3 + ND3 − ND̄3 =
χ(CY4)

24
, (2.2)

where χ is the Euler number of the four-fold. In the type IIB picture this number effectively

collects the contribution to the D3 brane charge from the orientifold planes and the D7

branes. Clearly, χ(CY4) needs to be divisible by 24, which puts a restriction on the space of

elliptic four-folds that can be used for compactification (not too strict one since χ(CY4) =

48 + 6(h1,1 + h3,1 − h2,1)).

The resulting effective field theory corresponds to a standard N = 1 supergravity with

number of scalar (moduli) fields counted by the Hodge numbers. The KKLT and LVS

scenarios, as well as the vast literature on the subject of type IIB moduli stabilization,

focus the attention on breaking the no-scale structure of the potential and on stabilizing

the Kähler moduli at a value where the internal manifold has a large volume as consis-

tency requires. In this process the non-geometric Kähler moduli are usually completely

disregarded and assumed non-existent. This is only justified in special cases for orientifold

projections where h1,1
− = 0, as otherwise we have additional moduli coming from the 2-form

fields B2 and C2 of the type IIB low energy effective action. One can find many examples

of Calabi-Yau four-folds leading to both h1,1
− = 0 and h1,1

− 6= 0 (cf. [19] or table B.4 of [20]

- keep in mind that h1,1
− = h2,1(CY4)).

For a generic manifold (h1,1
− 6= 0), the moduli to be stabilized in the theory are the axio-

dilaton τ = C0 + ie−φ (from here on referred to simply as dilaton), h2,1
− complex scalars zi

parametrizing the size of the surviving three-cycles appearing in (2.1), the Kähler moduli:

J = vα(x)ωα(y), α = 1, . . . , h
(1,1)
+ , (2.3)

– 3 –



J
H
E
P
0
1
(
2
0
0
9
)
0
4
6

and the corresponding axionic moduli ρα from the four-form C4:

C4 = ρα(x)ω̃α(y), a = 1, . . . , h
(1,1)
+ , (2.4)

with {ω̃α} the basis of harmonic (2, 2)-forms, dual to the (1, 1) basis {ωα} that is even under

the orientifold projection. The additional moduli entering the effective four-dimensional

field theory because of h1,1
− are:

B2 = ba(x)ωa(y), C2 = ca(x)ωa(y), a = 1, . . . , h
(1,1)
− , (2.5)

where {ωa} is the basis of harmonic (1, 1) forms that are odd under the orientifold pro-

jection. In the above formulae, x denotes the four-dimensional space-time where all the

moduli (and we) live, and y are the coordinates on the compact six-dimensional internal

manifold.

With these definitions, the Kähler metric on the space of moduli fields is given in

terms of the reduced complex structure coordinates coming from the explicit manifold and

in terms of the dilaton, the Kähler and the axionic moduli arranged as follows [21, 22]:

τ = C0 + ie−φ, Ga = ca − τba,

Tα =
3i

2
ρα +

3

4
κα(v) +

3i

4(τ − τ̄)
καabG

a(G − Ḡ)b, (2.6)

where κα(v) ≡ καβγvβvγ , i.e. it is just a four-cycle volume (with a different normalization

compared to the standard literature, used for simplicity). In this notation,

κ ≡ καvα = 6VCY = καβγvαvβvγ , (2.7)

where VCY is the volume of the manifold already after the orientifold projection. The

numbers καβγ and καab are the usual Calabi-Yau intersection numbers after performing the

orientifold projection. As explained in [22, 23], in the process of orientifolding consistency

requires that only the intersection numbers with even number of Latin indices are non-zero.

This means that for all α, β, a, b, c, καβa = κabc = 0 has to hold. The explicit construction

of orientifolds with such properties might not be straightforward. However, we need not

worry about this issue since orientifolding is performed implicitly from the F-theory picture

and thus consistency is guaranteed.

The standard N = 1 F-term potential1 for the moduli fields is given by:

V = eK
(

KIJ̄DIWDJ̄W̄ − 3|W |2
)

, (2.8)

where the indices I, J run over all chiral fields (the ones defined through (2.6) together

with the complex structure moduli zi), the matrix KIJ̄ is the inverse of the Kähler metric

KIJ̄ ≡ ∂I∂J̄K, and DIW = ∂IW + ∂IK · W . Here, the Kähler potential K and the

1Here we do not add D-terms that are also allowed in N = 1 supergravity. These generally appear

whenever there are charged chiral fields in the effective action. In principle this happens when one tries to

reproduce the MSSM by adding D7-branes [24], but here we strictly concentrate on moduli stabilization

and therefore neglect the possibility for a D-term potential.
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Index Chiral fields Real scalars Values

- τ C0, φ 1

i zi Re(zi), Im(zi) 1, . . . , h2,1
−

α Tα vα ↔ κα, ρα 1, . . . , h1,1
+

a Ga ba, ca 1, . . . , h1,1
−

Table 1: Multiplicity of chiral and real moduli.

superpotential W are functions of the moduli fields in a particular way that will be discussed

separately in the following sections. Once K and W are known, the moduli potential V

can be calculated and the minima to which the moduli fields roll down and get stabilized

can be found in principle.

From the above definitions, we see that:

κα =
2

3
(Tα + T̄α) − i

2(τ − τ̄)
καab(G − Ḡ)a(G − Ḡ)b. (2.9)

Had we assumed that h1,1
− = 0 the additional Ga-dependent term would vanish and every-

thing would be the same as in [3], so we see that the results in the literature are consistent

with the neglect of the non-geometric moduli. However, if we really want to stabilize all

moduli in the generic case where h1,1
+ ∼ h1,1

− ∼ O(100) we need to use the coordinate basis

given by (2.6). We will then describe in detail what happens in this case and show how

all these moduli will be eventually stabilized in a manner similar to the KKLT and LVS

procedures. In what follows we separately discuss the resulting moduli potential and its

stabilization for the tree-level case, and for the cases with added perturbative α′-corrections

to K and then D3-instantons to W . In the end we will be also able to draw conclusions on

how the addition of worldsheet instanton corrections to the Kähler potential can influence

the stabilization process.

Note that once we derive the moduli potential from the Kähler metric in the ba-

sis of chiral fields {τ, Tα, Ga}, we will be able to switch to the basis of real scalars

{C0, φ, vα, ρα, ba, ca} using (2.6). It will turn out that minimization of the potential is

easier in this new basis since the volume of the Calabi-Yau VCY = 1
6καβγvαvβvγ will de-

pend only on the two-cycle moduli vα and not on the other scalars. Of course, once having

stabilized all scalars one can always switch back to the initial chiral fields where the metric

on the moduli space takes a simpler form. For additional clarity we present table 1, listing

the chiral and real fields that appear in this work, their multiplicity and associated indices.

3. Tree level

At tree level, in four dimensional N = 1 supergravity, the Kähler potential is (see e.g. [5])

K = − ln[i

∫

CY
Ω(z) ∧ Ω̄(z̄)] − ln(−i(τ − τ̄)) − 2 ln(VCY), (3.1)

where the VCY = καvα

6 has to be regarded as a function of the true Kähler coordinates (2.6).

For κα we use (2.9), while vα can only be written in terms of the chiral fields implictly

– 5 –
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by inverting the quadratic relation κα = καβγvβvγ . The superpotential at tree level is

independent of the Kähler and axionic moduli and is given by the famous Gukov-Vafa-

Witten [25] flux superpotential

W (zi, τ) =

∫

CY
Ω(zi) ∧ (F3 − τH3). (3.2)

A detailed calculation of the Kähler potential and the superpotential was carried out in [5]

and generalized to all orientifolds in [22], both quantities follow from the N = 2 dimensional

reduction of the low-energy effective action before orientifolding. The full moduli potential

can be calculated from eq. (2.8). It is important here to stress that the potential at tree-

level is positive semi-definite. This is not directly obvious from the expression, but is

nevertheless true as it comes from the reduction of the N = 2, where it is manifestly

positive definite (c.f. appendix A.2 of [5]). This means that any full minimum of the

potential will be at V = 0 and local minima (if any) could be only of de Sitter type (at

V > 0).

With this information, we can now try to investigate the explicit form of the potential.

The somewhat involved calculation of the Kähler metric and its inverse are carried out in

appendix A.1 and the results are in exact accordance with those in [22, 26]. One of the

main results is given by the simple expression

KAB̄KAKB̄ = 4, (3.3)

where the indices A,B run over τ, Tα, Ga, and not over the complex structure moduli zi.

One can roughly break this sum into two contributions - a part in which the dilaton is

involved plus a part coming only from the Ga’s and the Tα’s as given by (A.8). This will

be helpful when we want to search for minima of the moduli potential.

The moduli potential (2.8) can now be calculated easily from (A.7) and (3.2), but its

minima cannot be found analytically and depend on the specific model. The only class

of controlled minima is realized when we stabilize the complex structure moduli and the

dilaton to a supersymmetric minimum, DziW = DτW = 0 - the same procedure used

in the KKLT and LVS. Imposing DziW = DτW = 0 results in stabilizing all zi’s and τ

to be some function of καabv
αbabb

VCY
as it appears in Kτ (A.5). When καabv

αbabb = 0 this

dependence vanishes and zi, τ are stabilized to constants as in the original KKLT. The

moduli potential after fixing DziW = DτW = 0 becomes

V =
eKe−2φ|W |2

4V 2
CY

(καabv
αbabb)2. (3.4)

It is manifestly positive semi-definite once more. Clearly we can reach the global minimum

V = 0 if καabv
αbabb = 0. In the initial Calabi-Yau three-fold, κα̂β̂γ̂vα̂ has a signature

(1, h1,1 − 1) [27] (here we use the convention (+,−) for matrix signature). After the

projection, καβγvα is with signature (1, h1,1
+ − 1) and καabv

α with (0, h1,1
− ). Then the only

solution of καabv
αbabb = 0 that is meaningful (i.e. we cannot have all vα = 0 as the Calabi-

Yau manifold will vanish) is to set ba = 0 for all a. This is the only generic possibility for

a Minkowski vacuum in this case, depicted on figure 1.

– 6 –



J
H
E
P
0
1
(
2
0
0
9
)
0
4
6

-2
-1

0

1

2

-2
-1

0
1

2
0

20

40

Figure 1: The form of the tree-level potential in the ba-directions for h1,1

−
= 2.

Note that V = 0 can be also achieved for VCY → ∞, e−φ = 0, or W = 0. We are not

interested in the first two cases as these contradict our initial construction, while W = 0

might be achieved for some solutions of DziW = DτW = 0 (in this case καabv
αbabb will

be stabilized to a certain value since it appears in DτW ). W = 0 will correspond to a

supersymmetric solution since then all covariant derivatives DIW vanish. However, it is

not clear how often this is possible since the solutions of these equations cannot be given

analytically, so the only generic solution remains ba = 0 for all a.

Therefore we are very restricted in terms of possible analytic scenarios for stabilization

of all moduli. The case when καabv
αbabb = 0 is a generic minimum of the potential,

corresponding to vanishing of all terms dependent on the non-geometric Kähler moduli.

This mechanism leads us back to the no-scale potential that is flat in the directions of the

geometric Kähler moduli since V = 0 after stabilizing all ba = 0. Note that also the masses

mba = 0 in this case, which is not what we need as a final outcome.

So we need to improve our approach in order to break this no-scale behavior and lift

up the axion mass. At this point one can employ the KKLT scenario of considering only

D3-instantons and then stabilizing all moduli at a supersymmetric point. A special case of

this idea was considered in [28]. We will however stick to the LVS procedure and calculate

first the effect of the leading perturbative corrections and only afterwards of the instanton

corrections on the potential that now includes the axionic moduli. This is in fact the more

general case and it does not exclude, but only improves KKLT. Thus we will be able to

consistently give mass to the ba’s and ca’s in the general case without the need to add

D-terms in (2.8).

4. Perturbative α
′-corrections

Including the leading perturbative α′-corrections as found first2 in [8] by reducing to N = 1

2Strictly speaking, only the orientifold with h
1,1
−

= 0 was considered at first. Later it was shown in [22]
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the results of [29] for the N = 2 case, the Kähler potential becomes:

K = − ln[i

∫

CY
Ω(z) ∧ Ω̄(z̄)] − ln(−i(τ − τ̄)) − 2 ln

(

καvα

6
+

ξ

2

(

τ − τ̄

2i

)3/2
)

, (4.1)

where ξ is a constant, proportional to the Euler number of the CY three-fold:

ξ = −4χζ(3)

(2π)3
. (4.2)

There are no α′-corrections to the superpotential in perturbation theory and so W is

still given by (3.2). Even only the addition of corrections in K changes considerably the

potential as we will see shortly. V does not have to be positive semi-definite any more

since ξ could be either positive or negative depending on the sign of the Euler number of

the Calabi-Yau. As we will see the sign of ξ will directly correspond to the sign of V .

To analyze the vacuum structure, we start again from (2.8). The computation of the

inverse Kähler metric including the α′-corrections is given in appendix A.2 (see (A.16)

and (A.17)). Thus once more we obtain a complicated expression3 for the potential that

cannot be minimized in a controlled way. Similarly to the tree level case, we continue by

imposing DziW = DτW = 0. At tree level, the stabilization of the other moduli then lead

to minima at V = 0. This property does not hold any more when the α′-corrections are

taken into account since the potential is no longer bounded from below. In the present

case, we will know that we have found minima only if they are at large volumes (in string

units) VCY due to the argument given in the Large Volume Scenario [6]. It goes as follows.

We write the full potential in a way to separate clearly the contributions from DziW and

DτW from the other terms. So we split (2.8) in three terms - a quadratic with respect

to DziW,DτW (both summation indices in (2.8) run over zi, τ), a linear (only one index

including zi or τ) and a constant (both indices running over the other moduli). Further

we focus on the scaling of these terms with volume and thus we use the leading terms of

the inverse Kähler metric (A.18):

V = eK(Kziz̄j
DziWDz̄jW̄ + Kτ τ̄DτWDτ̄W̄ )

+O(V
−2/3
CY )eK(WDτ̄W̄ + W̄DτW ) + Vα′ , (4.3)

with

Vα′ =
eKe−2φ|W |2

4VCY

(

3ξeφ/2 +
(καabv

αbabb)2

VCY
+ O(V

−2/3
CY )

)

. (4.4)

In (4.4) we have given only the leading terms in large volume, because the complete an-

alytic expression looks complicated (c.f. (A.17)) and we will only discuss large volume

stabilization for the following reason. The first term of (4.3) is positive semi-definite and

is only zero at the supersymmetric case DziW = DτW = 0. This term dominates the

other two at large volumes as it scales as V −2
CY while the two others scale as V

−8/3
CY and V −3

CY

that this can be trivially extended for a generic orientifold.
3Nevertheless, eq. (3.3) still holds. The factor 4 is generic for this class of Kähler potentials as discussed

in [30].

– 8 –



J
H
E
P
0
1
(
2
0
0
9
)
0
4
6

respectively. Then any movement of the complex structure and dilaton moduli away from

the supersymmetric point increases the potential, i.e. this point is a stable minimum. The

moduli potential simply becomes V = Vα′ and minimizing it with respect to vα, ba will

result in full minimization of the initial moduli potential in all directions as long as the

large volume assumption is satisfied for the obtained minima.

Therefore, we can consistently neglect the terms of order V
−11/3
CY and lower in (4.4).

We first observe that, apart from the non-generic supersymmetric point at W = 0 (corre-

sponding to KKLT type of extremum), we again need to set καabv
αbabb = 0 ⇔ ∀ba = 0

in order to minimize the term depending on the axionic moduli. But in this case we are

still left with volume dependence since the ξ term survives. Now we see how important

the sign of ξ turns out to be:

• ξ > 0, i.e. χCY < 0: The resulting potential is positive definite and vanishing as

VCY → ∞, i.e. this case is consistent with our assumptions but leads to decompact-

ification of the Calabi-Yau. One can only hope that non-perturbative effects will

eventually create a minimum at some finite large value of the volume (this is what

happens in the LVS).

• ξ < 0, i.e. χCY > 0: In this case the minimum is when the volume goes to zero and the

potential goes to −∞. Clearly, none of these is in accordance with the approximations

made so far, and we can only trust the result at large volumes where no minima can

be found. Instanton corrections cannot help in generating large volume minima since

they cannot uplift the global minimum at VCY = 0. Therefore, this case is undesirable

and one needs very different approach in order to solve the problem of stabilizing the

moduli for positive Euler number Calabi-Yau three-folds.

5. D-brane instanton corrections

Until now we only considered the tree-level superpotential (3.2). Let us see what happens

if we assume that the compactification manifold meets the criteria that allow for nonzero

D3-instanton contributions to W .

At this point a few words about instantons are in order. In string theory instantons

can appear in Calabi-Yau compactifications when Euclideanized branes wrap cycles of the

manifold [31]. If the branes wrap around cycles in such a way that supersymmetry is

preserved, the corresponding cycle is called supersymmetric. It is exactly those cases that

give a finite non-vanishing contribution to some of the physical quantities. As explained

in [10], the counting of zero modes for a specific cycle eventually determines if it is super-

symmetric or not. This translates into a nontrivial condition on the given cycle, depending

on its dimension. For example (relevant here) it turns out that the 4-cycles that satisfy

these criteria, admitting D3-brane instantons, are the ones that have an Euler number

χE = 1. However, this condition is more subtle after the addition of fluxes [11, 12] and

then one has to check each cycle separately. Fundamental string worldsheets as well as

NS5-branes can also give rise to instantons. It turns out that worldsheet instantons give
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rise to non-perturbative α′ corrections to the Kähler potential, while D3-branes and NS5-

branes contribute to the superpotential. In this paper we shall neglect NS5 contributions

since they are subleading at large volume as discussed in [32].

The superpotential with D3-instanton corrections is then:

W = Wtree +
∑

α

Aα(zi, τ,Ga)e−aαTα = W0 + Wnp, (5.1)

where the sum over α only goes through the supersymmetric cycles. The coefficients Aα

can in principle depend on all other moduli except the Tα’s but their explicit dependence is

hard to determine and does not lead to further insight in the process of moduli stabilization

at present (see, e.g. section 2.4 of [23]).

We can directly use the Kähler potential (4.1) since we already showed that the α′-

corrections will substantially change the minimization process and cannot be neglected.

Therefore, the moduli potential in analogy to (4.3) will become:

V = eK(Kzαz̄β
DzαWDz̄βW̄ + Kτ τ̄DτWDτ̄W̄ )

+O(V
−2/3
CY )eK(WDτ̄W̄ + W̄DτW ) + Vα′ + Vnp1 + Vnp2, (5.2)

with

Vα′ =
eKe−2φ|W |2

4VCY

(

3ξeφ/2 +
(καabv

αbabb)2

VCY
+ O(V

−2/3
CY )

)

, (5.3)

Vnp1 = eK
∑

α,β

{
(

−3

2
(κκαβ − 3

2
κακβ) − 3

2
e−φκκabκαacb

cκβbdb
d + O(κ0)

)

aαaβAαĀβ +

+(−ie−φκκabκαbcb
c + O(κ0))

(

aαAα∂ḠaĀβ − aαĀα∂GaAβ

)

+

+

(

−2

3
e−φκκab + O(κ0)

)

∂GaAα∂ḠbĀβ}e−(aαTα+aβ T̄β), (5.4)

Vnp2 = eK
∑

α

(

3

2
κα + O(κ−2/3)

)

(

aαAαW̄ e−aαTα + aαĀαWe−aαT̄α

)

, (5.5)

where the summations are still only over supersymmetric cycles. Vnp1 = eKKij̄∂iW∂j̄W̄

and Vnp2 = eKKij̄
(

KiW∂j̄W̄ + ∂iWKj̄W̄
)

, i, j = Tα, Ga are new terms here - they appear

because now ∂TαW 6= 0 and ∂GaW 6= 0.

By the same argument from the discussion after eq. (4.4), at large volumes we can

consistently set DzαW = DτW = 0. The resulting equations have Ga and Tα dependence

that is suppressed with VCY, so we can safely assume that all complex structure moduli

and the dilaton have been set to constants. Then,

V = Vα′ + Vnp1 + Vnp2. (5.6)

In principle, at this point we can also choose to follow the KKLT proposal and stabilize

all moduli supersymmetrically, i.e. requiring additionally DTαW = DGaW = 0. The

solutions of these equations will correspond to a set of extrema of the potential and one

has to check explicitly which ones are minima. Thus we would obtain a number of solutions
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to our problem that unfortunately cannot be listed analytically and so we cannot draw any

further conclusions. Therefore we now turn to the LVS idea of trying to minimize (5.6) at

large manifold volume, which ensures us of finding minima in the full moduli space.

However, it is not so straightforward to minimize (5.6) and we need to make some

simplifications of Vnp1 and Vnp2 in order to proceed. The scaling of both expressions (5.4)

and (5.5) is being dominated by the exponential terms, and more precisely by the real part

of the term in the exponent, while the imaginary part decides on the sign. At large 4-cycle

volumes the terms are very suppressed and we can safely ignore them as the exponential

function drops to zero very rapidly.4 Therefore the dominating terms in Vnp1 and Vnp2 will

be the ones corresponding to the small (supersymmetric) cycles κα, which we shall denote

κs. Here we implicitly assume that the internal manifold is of ”Swiss-cheese” type [7],

ensuring that small enough cycles do exist for large overall volume. This is required so that

the new terms Vnp1 and Vnp2 can compete with the previously discussed Vα′ as otherwise

D-instanton corrections are diminishing and we arrive back at the situation of section 4.

5.1 One small 4-cycle

Assuming for the moment that there is one small 4-cycle and all the others are too big, in

the sense that e−κα ≪ e−κs for all α 6= s, we finally obtain

V = eK

[

−α(b)κse
− 3

4
asκse

3
4
ase−φκsabb

abb
+

β(b)

VCY
+ γ(b)(−κss)VCYe−

3
2
asκse

3
2
ase−φκsabb

abb

]

,

(5.7)

where the exact dependence of α, β and γ on the ba’s is coming from (5.3) - (5.5):

α(b) = −3

2

(

AsW̄e−ias( 3
2
ρs+

3
4
κsab(Coba−ca)bb) + ĀsWeias(

3
2
ρs+ 3

4
κsab(Coba−ca)bb)

)

, (5.8)

β(b) =
e−2φ|W |2

4

(

3ξeφ/2 +
(καabv

αbabb)2

VCY

)

, (5.9)

γ(b) = 6

[(

3

2
+

3e−φ

2κss
κabκsacb

cκsbdb
d

)

a2
s|As|2 +

2e−φ

3κss
κab∂GaAs∂ḠbĀs +

+
ie−φ

κss
κabκsbcb

cas

(

As∂ḠaĀs − Ās∂GaAs

)

]

. (5.10)

We further need to assume κss ≃ −√
κs a la LVS, in order to make sure the γ term in (5.7)

is not subleading. This is the only possibility to obtain large volume minima within the

approximation of neglecting multi-instanton contributions to (5.1), as proven in details in

the appendix of [33].5

In (5.8) for the first time we explicitly see some dependence on the moduli ρs, c
a defined

through (2.4) and (2.5). This means we are allowed to stabilize them in a way that will

maximize α, thus minimizing the overall potential. Since they appear only in the imaginary

4Strictly speaking, we are cheating here. Even for the large cycles κL, big enough values of κLabb
abb will

make the non-perturbative contributions important. We will neglect such possibility at first and comment

on it when we consider the general case with many 4-cycles in subsection 5.2.
5Multi-instanton contributions can be safely ignored as long as asκs ≫ 1 in string units.
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part of the exponent they can only determine the sign of α but not its magnitude (they

can give a relative prefactor between −1 and 1). Therefore it is clear that ρs, c
a arrange

themselves in a way to make the expression as large positive as possible. Since they appear

in the term asAsW̄ e−ias( 3
2
ρs+ 3

4
κsab(Coba−ca)bb) + c.c., there will be one equation to constrain

the possible values of ρs and the ca’s. This will be enough to stabilize ρs as in the original

LVS and the ca’s still remain unstabilized. Therefore α > 0 with certainty and its ba-

dependence is absorbed by ρs, such that

α = 3|As||W |.

On the other hand, we know that γ(b) must be positive as it comes from the inner

product of the vector ∂iW with itself. β(b) is also positive by assumption since a negative

value will not lead to consistent minima as shown in the previous section. Then, in order

to minimize the full potential, the remaining free moduli will try to make the magnitude

of the terms with β and γ as small as possible and the magnitude of the term with α as

big as possible (as it appears with negative sign).

To find the minima of the potential V we need to solve the system of equations ∂V
∂ba = 0

for all a, ∂V
∂κs

= 0, and ∂V
∂VCY

= 0. To leading orders in volume,

∂V

∂ba
= eKκsabb

be−
3
4
asκse

3
4
ase−φκsabb

abb√
κs

[

−3

2
α
√

κs + 3γVCYe−
3
4
asκse

3
4
ase−φκsabb

abb

]

+

+
eKe−2φ|W |2

V 2
CY

καabv
αbbκαabv

αbabb + eK ∂γ

∂ba
VCYe−

3
2
asκse

3
2
ase−φκsabb

abb
. (5.11)

We have extrema of the potential in the b-moduli directions whenever ∂V
∂ba = 0 for all ba.

This is satisfied by ba = 0 for all a,6 while other solutions can be found only for specific

cases depending on the form of the intersection numbers καab and the coefficients As.

Note that if all ba = 0 we get back the Large Volume Scenario [6], α(b) = αLVS,

β(b) = βLVS, and γ(b) = γLVS. The solutions of ∂V
∂κs

= 0 and ∂V
∂VCY

= 0 can be found

explicitly only numerically, but the small cycle will be always stabilized to κs ≈ ln(VCY).

Then minima at large volume VCY can exist under the same conditions as in [6, 7], i.e.

some particular relative weight of the prefactors α, β, and γ (β ≫ α and/or γ ≫ α).7

If all ba = 0 we can go further and compute the matrix of second derivatives:

(

∂2V

∂ba∂bb

)

ba=0,∀a

=
3eK

VCY

[

κsab

(

−1

2
α ln(VCY) + γ

√

ln(VCY)

)

− e−φ

2
κcdκsacκsbd

]

. (5.12)

6Here we further assume that ∂GaAs = 0 when all ba = 0. Thus, ∂γ
∂ba = 0 at this point of moduli space.

If this is not the case, ba = 0,∀a cannot be an extremum of V , but ∂γ
∂ba will still be small at large volumes

and the extremum will be very close to ba = 0, ∀a without changing our qualitative discussion.
7It is easy to see from (5.7) that the term with α will always dominate at VCY → ∞ as it will scale

additionally as ln(VCY), while the term with γ only scales with
p

ln(VCY) and the term with β has no

additional scaling. Thus large volume minima can only be reached when one of the positive β and γ terms

competes and dominates over the negative term until VCY is large. So we can roughly estimate the relative

weights of α, β, γ based on scaling. We need VCY & 106, thus β & 14α and/or γ & 4α. In the main text we

denote these criteria β ≫ α and/or γ ≫ α in order to keep the discussion as general as possible.
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κcdκsacκsbd is a negative definite matrix since κcd = (κcd)
−1 (here we use the definition

κab ≡ καabv
α), so it always gives a positive contribution to (5.12). However, this term is

subleading in VCY and therefore we concentrate on the other part of the expression. In

typical cases α and γ are of the same order of magnitude so the term in round brackets

is negative.8 The matrix κsab could in some cases be negative definite as it comes from

the orientifold projection and we know from before that καabv
α is negative definite. If

this is the case,
(

∂2V
∂ba∂bb

)

ba=0,∀a
is positive definite and therefore ba = 0 is a minimum of

the potential with the Large Volume Scenario holding for suitable values of α, β, γ. In

principle, even when κsab has nonnegative eigenvalues we can have full minima due to the

positive contribution from κcdκsacκsbd but this seems possible only for not so large values

of VCY and is therefore not a generic case. The argument is reversed when γ ≫ α, as in

this case the term in the round brackets becomes positive and ba = 0 is a minimum if κsab

is positive definite (not very likely).

Apart from this analytic class of minima, we can show the existence of another class

of minima, for which explicit solutions cannot be given. From (5.11) we see there can be

extrema also when ba 6= 0 for some a’s. And, in fact, we know that some of these extrema

will certainly be minima of the potential as long as ba = 0 is not a minimum. The proof

that there is always at least one minimum of the potential is carried out in appendix B. It

follows that if κsab does not satisfy the above conditions to make ba = 0 a minimum, then

there will still be a minimum with at least one of the ba’s nonzero. In this case we lose

analytic control over the values of κs and VCY at the minimum, so we cannot a priori make

sure that the large volume assumption and the neglect of multi-instanton contributions are

justified. This will fully depend on the explicit form of the intersection numbers καab. It

is only clear that the ba’s will still tend to minimize καabv
αbabb in (5.9), i.e. as many as

possible of the b-moduli will be zero if they are not fixed by ∂V
∂ba = 0. One would naturally

expect that the closer κsabb
abb is to zero at the minimum, the closer the values of κs and

VCY are to the LVS case.

To illustrate the above explicitly, consider a simple version of (5.11) where ∂β
∂ba , ∂γ

∂ba

always vanish. Then another analytic solution of ∂V
∂ba = 0 is

κsabb
abb =

4eφ

3as
ln

(

α
√

κs

2γVCY

)

+ eφκs.

This is satisfied generally on a hypersurface of the full b-moduli space where at least one of

the ba’s is nonzero. Lower order corrections will then also fix the remaining free ba’s. It is

easy to verify that this hypersurface is a minimum in all b-directions, but when considering

minimization in the κs and VCY directions this is no longer a valid solution, as expected

since our initial assumption to neglect the b-dependence of β and γ is clearly wrong.

However, this gives us some intuition for what to expect roughly from the possible minima

that are not at ba = 0,∀a. It is likely that brute-force solution of (5.11) will only lead to a

hypersurface of minima that is subsequently refined by the lower order corrections.

8α and γ are determined from the stabilization of zi and τ , so ”typical” here refers to statistically more

probable. γ ≫ α only when W0 is small.
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Generic minimum α ↔ γ Restr. on κsab Large Volume

ba = 0, ∀a
α
√

ln VCY > 2γ Neg. def. β ≫ α

α
√

ln VCY < 2γ Pos. def. β ≫ α / γ ≫ α
∂V
∂ba = 0, a = 1, . . . , h1,1

− α
√

ln VCY > 2γ Not neg. def. β ≫ α

∃ã, s.t. bã 6= 0 α
√

ln VCY < 2γ Not pos. def. β ≫ α / γ ≫ α

Table 2: Axion stabilization scenarios for one small 4-cycle s.

So finally we emerge with two main scenarios for stabilization of the non-geometric

moduli that entirely depend on the specific Calabi-Yau intersection numbers. The two

cases are sketchily summarized in table 2. If κsab has also zero eigenvalues there will be flat

directions at leading order, which will be fixed by the subleading tree level term καabv
αbabb

in β (we will see soon that for more small moduli flat directions at leading order are unlikely

to appear).

5.2 Many small 4-cycles

Generalizing these conclusions for many small moduli is more involved due to a subtlety

coming from Vnp1 (see (5.4)). There we obtain a mix of exponential terms for different

cycles. Now also each separate small four-cycle (as long as it is supersymmetric) will lead

to a corresponding non-perturbative contribution to the α and γ terms:

V = eK

[

β(b)

VCY
+

n
∑

i=1

{

− αi(b)κsie
− 3

4
asiκsi e

3
4
asie

−φκsiabb
abb

+γi(b)(−κsisi)VCYe−
3
2
asiκsi e

3
2
asie

−φκsiabb
abb

}]

(5.13)

−
∑

i<j

{

6VCYeK

[

ie−φκabκsibcb
c(asiAsi∂ḠaĀsj −asiĀsi∂GaAsj )+

2

3
e−φκab∂GaAsi∂ḠbĀsj

+

(

3

2
κsisj +

3

2
e−φκabκsiacb

cκsjbdb
d

)

asiasjAsiĀsj

]

e−(asi Tsi+asj T̄sj ) + c.c.

}

,

where the constants αi and γi are defined in analogy to (5.8), (5.10) with addition of the

index i where needed to distinguish between different small-volume cycles. Thus we can sta-

bilize all ρsi by maximizing each αi separately. We see that the second part of (5.13) (third

and fourth row) is a new term that mixes in a complicated way all moduli κsi , ρsi , b
a, ca

(hidden in the exponents of Tsi). Its value is ultimately restricted by the condition Vnp1 ≥ 0

so it must be smaller than the γi contributions. These additional terms will solve the prob-

lem with the unstabilized ca’s as they exhibit a nontrivial dependence on them (unless

all ba = 0). Clearly, the minima with respect to the ca’s can only be found numerically

after specifying the concrete model and the number of stabilized axions will depend on the

values of h1,1
− and the cycles admitting instanton corrections. Therefore the stabilization

of ca’s cannot be controlled analytically very well, analogously to the stabilization of ρα’s.
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As before, it is easy to see9 that there is an extremal point at ba = 0 for all a:
(

∂V
∂ba

)

ba=0,∀a
= 0. Again, other analytic solutions of ∂V

∂ba = 0 cannot be given, here the

equation is even more complicated than (5.11). When all ba = 0, we recover the many-

cycle LVS. The dependence on the ca moduli of the potential disappears while dependence

on ρsi becomes considerably more complicated compared to the one small cycle case. A

detailed discussion of the minimization in the ρ-directions is given in A.2 of [33] and we will

not repeat it here. The main result in the end is that large volume minima as before can

still exist for certain configurations of the intersection numbers (see the reference for more

details): again, κsi ≈ ln(VCY), (−κsisi) ≈
√

ln(VCY) for all small cycles and the volume is

stabilized at a large value. This point is a minimum in the b-moduli directions as long as

(

∂2V

∂ba∂bb

)

ba=0,∀a

=
3eK

VCY

[

n
∑

i=1

κsiab

(

−1

2
αi ln(VCY) + γi

√

ln(VCY)

)

+ O(V
−1/3
CY )

]

(5.14)

is positive definite. Note that in general α1 ≃ α2 . . . ≃ αn and γ1 ≃ γ2 . . . ≃ γn as

they differ only by the small differences in the proportionality constants asi , Asi . Now the

condition for ba = 0 to be minimum essentially states that the combined matrix as sum of

sub-matrices (κs1ab + . . .+κsnab)
10 should be negative or positive definite depending on the

term in brackets (most likely αi ∼ γi and then the matrix needs to be negative definite).

Once again, we can in general prove the existence of at least one minimum. The

argument goes exactly as in the case of one small modulus in appendix B, and the essential

point will again be that the dependence on γi is not crucial asymptotically so we can neglect

it (this also means neglect of the additional mixing terms as they arise together with the

γi terms from (2.8)). We will not repeat the same considerations specifically for this case,

as all statements in appendix B can be easily generalized to include many small moduli.

There is now an important difference between the analytical minimum ba = 0 and the

other possibility when at least one of the ba’s is nonzero. In the latter case the additional

mixing term will depend on the ca’s and we will be able to fix some or all of them while

also being able to stabilize the ρsi ’s in a more straightforward manner. The number of

stabilized ca’s will depend on the number of nonzero b-fields so one needs to go to the

specific manifold model. Furthermore, when some ba’s are nonzero there is an additional

subtlety. The full potential originally depends also on the large cycle κL but we regarded

this contribution as largely suppressed. However, if κLabb
abb ≫ 0 this assumption might

not be correct and there would be another term to consider. If this is the case we can

drop the requirement for ”Swiss-cheese” manifold since we will no longer make use of a

clear distinction between small and large 4-cycles. Again, this issue can only be assessed

properly once an explicit manifold is chosen.

Note that in order to obtain a large volume minimum, the γi ≫ αi option is question-

able in general due to the fact that the additional terms in (5.13) could decrease substan-

9Again, we assume that ∂GaAsi
= 0 for all i when all ba = 0.

10Here we assumed exact equalities α1 = α2 . . . = αn and γ1 = γ2 . . . = γn. Generally, the combined

matrix of interest is a weighted sum of κs1ab, . . . , κsnab, but the weights are nearly equal.
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Generic minimum Restr. on
∑

i κsiab Large Volume Stab. moduli

ba = 0, ∀a Neg. def. β ≫ αi,∀i zi, τ, VCY, vsi , ρsi

∂V
∂ba = 0, a = 1, . . . , h1,1

− Not neg. def. β ≫ αi,∀i
zi, τ, VCY, vsi , ρsi ,

∃ã, s.t. bã 6= 0 a part of {ca}
Table 3: Axion stabilization scenarios for n small 4-cycles s1 . . . sn.

tially the effective value of each γi. Therefore, in order to make sure VCY is stabilized large

in all cases, we require that β ≫ αi,∀i.11

We have thus found possible minima not only for vanishing ba’s, but also for non-zero

values. The main results are given in table 3. As we will see in the next section these

minima could be further destabilized by other instanton effects, so the minimization of the

axionic moduli turns out to be a nontrivial step in the stabilization process.

6. Worldsheet instanton corrections

Another correction to the Kähler potential is given by worldsheet instantons wrapping

holomorphic 2-cycles on the internal manifold. It is inherited from the type IIA N = 2

prepotential [14, 29], given by:12

F0(X) = Fcl(X) + Fpert(X) + Fnon−pert(X), (6.1)

with

Fcl(X) =
1

3!

καβγXαXβXγ

X0
, Fpert = i

ξ

8
(X0)2,

Fnon−pert(X) = i
(X0)2

(2π)3

∑

ΣβǫH2

∞
∑

n=1

n0
Σβ

n3
e2πnikβ

αXα/X0
, (6.2)

where ξ is as defined in (4.2), καβγ are the usual intersection numbers, kβ
α =

∫

Σβ
ωα̂,

2Xα ≡ ivα̂ + bα̂, α = 1, . . . , h1,1 before orientifolding,13 and X0 has to be set to 1 after

obtaining the Kähler potential. The numbers n0
Σβ

are the genus zero topological invariants

of Gopakumar-Vafa [16], associated with each element of the homology. Thus, F0 is the

prepotential for the vector multiplets of type IIA at tree-level of string-loop expansion that

11As in the one small 4-cycle case, for the non-analytic minima with nonzero ba’s we cannot decide with

certainty about the criterion for large volume minimum. We can only hope
P

i κsiabb
abb is not too far from

zero and then use the same requirement β ≫ αi for all i.
12Note the slight change of notation as compared to [14, 29]. This is consistent with the intended

identification of the coordinates XI here and leads to the same form of the Kähler potential.
13The hats on α̂ are introduced for a clear distinction between the N = 1 variables of section 2 and the

ones used here at N = 2.

– 16 –



J
H
E
P
0
1
(
2
0
0
9
)
0
4
6

receives both perturbative and non-perturbative corrections in α′.14 It can be translated

to the type IIB orientifold picture by the classical c-map [34] with the new coordinates

Xα = ivα/2, α = 1, . . . , h1,1
+ and Xa = ba/2, a = 1, . . . , h1,1

− (see also e.g. [15] for more

details on how this works). The relevant part of the Kähler potential can then be calculated

directly by

K = −2 ln

(

ie−2φ

(

XI ∂F̄0

∂X̄I
− X̄I

∂F0

∂XI

))

X0=1

, (6.3)

where the final result for K needs to be expressed as before in terms of the chiral fields of

section 2. Using this, we finally obtain in the Einstein frame

K = − ln(−i(τ − τ̄)) − 2 ln

(

VCY +

(

τ − τ̄

2i

)3/2(ξ

2
+

4

(2π)3
̟ws(τ,G)

)

)

, (6.4)

with

̟ws(τ,G) =
∑

ΣβǫH−

2

∞
∑

n=1

n0
Σβ

n3
cos

(

nπ
kβ

a (G − Ḡ)a

τ − τ̄

)

=
∑

ΣβǫH−

2

∞
∑

n=1

n0
Σβ

n3
cos(nπkβ

a ba), (6.5)

where kβ
a =

∫

Σβ
ωa and ωa are the harmonic (1, 1)-forms that are odd under the orientifold

projection and Σβ are the corresponding 2-cycles. The contributions from the even (1, 1)-

forms are exponentially suppressed with the vα’s and we can safely neglect them. This

new Kähler potential includes infinite (converging) sum over n and another sum over the

elements of the homology H−
2 of the CY manifold.15 This makes the metric very hard to

invert and we cannot present a generic inverse of KAB̄ that is manifold independent as

was the case before. However, we can use the intuition from previous results to draw quite

generic conclusion on how worldsheet instantons can influence the moduli stabilization.

Note that the corrections are subleading in volume,

K = −2 ln(VCY) − 2

(

τ−τ̄
2i

)3/2
(

ξ
2 + 4

(2π)3
̟ws(τ,G)

)

VCY
+ O(V −2

CY ). (6.6)

Therefore the worldsheet instantons will appear in the end result the same way as the

perturbative corrections, i.e. in the definition of the β term (see eqs. (5.7) and (5.9)). They

would be too subleading to influence the α, γ terms in (5.7).

If we consider more closely the dependence of ̟ws, we see that its extrema can be

given by the condition kβ
a ba = lβ for an integer number lβ. In fact ̟ws is maximized for

lβ = 0,±2,±4 . . . and minimized whenever lβ = ±1,±3,±5 . . . for every cycle Σβ. If indeed

kβ
a ba = lβ for all Σβ, then both ∂̟ws

∂τ and ∂̟ws
∂Ga vanish. So in this case we can effectively

consider ̟ws to be constant for the purpose of obtaining analogs of (A.18) and (A.19) that

14These non-perturbative corrections are in fact the genus zero worldsheet instanton contributions to

the prepotential. Higher genus worldsheets instantons do not appear in the prepotential and will not be

discussed further. Although it is not fully precise, here we refer to the genus zero worldsheet instantons

simply as worldsheet instantons.
15This sum also needs to be finite, see section 2.2 of [23] for discussion of this issue.
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eventually determine the expression for β. Then the Kähler metric can be again inverted

analytically16 just by adding the constant 8
(2π)3

̟ws to the existing ξ in the formulae in

appendix A.2. For the minimum of ̟ws we get:

̟ws|kβ
a ba=lβ ,lβ=±1,±3...,∀Σβ

=
∑

ΣβǫH−

2

∞
∑

n=1

(−1)nn0
Σβ

n3
= −3ζ(3)

4

∑

ΣβǫH−

2

n0
Σβ

. (6.7)

The minimization of ̟ws means minimization of the full potential as it decreases the value

of the β term:

βws|kβ
a ba=lβ ,lβ=±1,±3...,∀Σβ

=
3eKe−3φ/2|W |2ζ(3)

2(2π)3



(−2χ) − 3
∑

ΣβǫH−

2

n0
Σβ



 . (6.8)

Note that in the case when ba = 0 for all a, ̟ws is maximized and the sign in front of the

instanton sum in (6.8) flips. This will make ba = 0 much less likely to be a minimum of the

potential, e.g. (5.12) and (5.14) will be corrected with the negative sum over Gopakumar-

Vafa (GV) invariants. In case it is large enough, the sum will make sure that ba = 0,∀a is

in fact a maximum. And the minimum will certainly be at a point which decreases β. If the

β term decreases so much that it becomes negative we will no longer have any consistent

minima in the volume direction as discussed in sections 4 and 5. β > 0 is absolutely

crucial for the existence of LVS minima, while supersymmetric KKLT minima can exist

independently of the sign of β. On the other hand, if β is positive of the order of α, γ we

will only have small volume minima in the LVS. So one can only hope that the 2-cycles of

the manifold do not allow for larger values of the GV invariants and thus of the worldsheet

instanton corrections as this can spoil the whole process of moduli stabilization. The case

γ ≫ α might still enable the existence of desired minima for small positive β, but this does

not seem to be possible for many supersymmetric cycles as seen in subsection 5.2.

The above discussion is in fact quite general and does not necessarily have to hold only

for the special points in b-moduli space that minimize ̟ws, although these are the cases

that can be handled analytically (as long as the inverse Kähler metric is concerned). Even

for generic values of the ba’s at the minimum of the potential where we also get corrections

from ∂̟ws
∂Ga , the β term will tend to decrease as all terms in β coming from worldsheet

corrections will necessarily be periodic and therefore allowed to become negative.17 Note

that in fact the worldsheet instantons are the leading term that exhibits ba-dependence.

The tree-level term from section 3 is suppressed by V
1/3
CY compared to ̟ws, and therefore we

expect that (even without having any D3-instantons) the ba’s are stabilized away from zero,

unless the GV invariants are small. Thus the volume will be usually stabilized at a lower

value as compared to section 5, due to the decrease in the β term. As we see the risk for

16In the sense that the potential V is precise upto order O(V
−10/3
CY ), i.e. the inverse metric is analytic at

leading order. This is all we need since we are working under the assumption of large volume. The Kähler

metric cannot be inverted to all orders due to the fact that e.g. ∂2̟ws

∂Ga∂Gb̄
does not vanish at the minimum.

17Unfortunately, as long as |2χ| < |3
P

Σβ
n0

Σβ
|, β will necessarily be stabilized negative as this ensures

the minimum of the potential is at very large negative values Vmin → −∞ and very small manifold volumes.

This is of course not an acceptable vacuum as it contradicts all assumptions of our construction.
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the stability of the LVS minima after adding worldsheet instantons is very general and one

needs to explicitly calculate the invariants n0
Σβ

in order to make sure phenomenologically

accepted vacua are still present in a given model. Even if this is so, the second type of

generic vacuum in table 3 is the most plausible (and least well controlled) outcome.

7. Discussion

We made some progress towards full stabilization of the scalar fields in the compactification

of type IIB string theory on Calabi-Yau orientifolds with h1,1
− 6= 0. As seen, the search for

supersymmetric and non-supersymmetric minima of the moduli potential is a nontrivial

task. Many approximations and simplifications are employed in the process and it is not

always granted that these are justified in all possible models. Clearly, perturbative and

non-perturbative corrections play an important role and it is unfortunate that at present

there is no full classification of possible terms that can appear in the Kähler potential and

the superpotential.

Nevertheless, in the literature one can find extensive discussion of quantum corrections

and their regime of importance, i.e. how suppressed they are with the volume. References [9,

35], and [33] study this topic in detail and show that string loop corrections for ”Swiss-

cheese” CY manifolds are subleading compared to the perturbative and non-perturbative

α′-corrections so they only help stabilizing the non-supersymmetric 4-cycle volumes, but

there may be other types of manifolds for which this is not satisfied. Other possible

perturbative α′-corrections are known to be less important compared to the ones discussed

in the LVS, i.e. it seems that the LVS is safe from further perturbative α′ and gs corrections.

However, there might be other corrections from DBI actions and N = 1 supergravity that

are of importance (see e.g. section 6 and 7 of [9] for more details). If we are to claim that

realistic string compactifications have been found, a better understanding of all quantum

corrections is needed. Needless to say, same holds for instanton corrections to W and K

— as seen in the previous section worldsheet instantons have the potential to break down

the LVS.

Despite these shortcomings, we managed to show with certainty that all ba’s are sta-

bilized already at tree level with instanton corrections possibly changing their vevs and

lifting their masses, and that the ρα’s and (some of) the ca’s are stabilized if D3-instanton

effects contribute to the moduli potential of the given model. The above is true under the

condition that the manifold volume is stabilized large, which ultimately depends on the

topological data for the manifold and the stabilization of the complex structure moduli

that appear implicitly in the α, β, and γ terms defined through (5.7)–(5.10). Therefore

our procedure works for a subset of all minima that one can find in the landscape of vacua,

i.e. for those cases that produce the desired relative weights of α, β, γ as discussed in sec-

tion 5. How large this subset is depends on the specific Calabi-Yau manifold, which also

determines the type of perturbative and non-perturbative corrections that should be con-

sidered. So in the end everything can be determined from the topological structure of the

compactification manifold as expected. It seems that at present the full generality of the
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construction defined in section 2 is exhausted and one needs to go to specific examples in

order to obtain more explicit results that can be used for predictive purposes.

We will now try to briefly describe some applications that make use of these axionic

moduli [36 – 38]. In type IIB the axions arise from the 2-form fields B2 and C2 and the

4-form field C4 as given by eqs. (2.5) and (2.4). There are a few ideas to employ these

scalars for phenomenological purposes. One scenario, developed initially by Peccei and

Quinn [39], proposes that a massive scalar field (an axion) provides a solution to the CP

problem in QCD. Reference [37] discusses in detail whether the missing Peccei-Quinn axion

can be coming from the C4-moduli. The present work might help answering this question

also for the B2, C2-axions. To study this, one should however also include open string

moduli which was beyond the scope of this paper. Another possibility to use axions is

for driving inflation in the early universe [40] (also called N-flation). In [38] and [13] the

N-flation scenario with type IIB axions was considered and made plausible in some specific

toy models. Therefore our work extends the possibility to study this idea as it provides a

more systematic approach to the subject. We leave this for future research.
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A. Inverting the full Kähler metric

Here we will present in detail how to deal with inverting the matrix of partial derivatives

KIJ̄ = ∂I∂J̄K after including the non-geometric moduli. We will not consider the complex

structure moduli dependence, as they are not coupled to the dilaton and the other moduli

in K:

KIJ̄ =

(

Kziz̄j 0

0 KAB̄

)

(A.1)

Kziz̄j cannot be inverted explicitly without a given model, so we focus on inverting KAB̄ .

We will show that, although rather non-trivial, there is an exact analytic solution for the

inverse metric KAB̄ both at tree level and with perturbative α′-corrections included. We

will therefore consider these cases separately in different subsections.

A.1 Tree level

More explicitly, the relevant part of the Kähler potential (3.1) is

K = − ln(−i(τ − τ̄)) − 2 ln

(

(2
3 (Tα + T̄α) − i

2(τ−τ̄)καab(G − Ḡ)a(G − Ḡ)b)vα(Tα, Ga, τ)

6

)

,

(A.2)
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where vα is an implicit function of the Kähler coordinates. It is given by the relation

κα = καβγvβvγ = καβvβ, where we made the definition καβ ≡ καβγvγ . Therefore, vα =

καβκβ . We make an analogous definition for the intersection numbers with Latin indices:

κab ≡ καabv
α.

Now we can calculate the actual Kähler metric, using the following matrix definitions

that are used for shorthand and easier calculation:

Gαβ ≡ −2

3
κκαβ + 2vαvβ, Gab ≡ −3

2

κab

κ
, (A.3)

and their corresponding inverses

Gαβ = −3

2

(

καβ

κ
− 3

2

κακβ

κ2

)

, Gab = −2

3
κκab. (A.4)

The first partial derivatives of K can then be computed to be:

Kτ = −Kτ̄ = − 1

τ − τ̄
− 3i

2(τ − τ̄)2κ
κab(G − Ḡ)a(G − Ḡ)b

=
ieφ

2
+ iGabb

abb,

KGa = −KḠa =
3i

(τ − τ̄)κ
κab(G − Ḡ)b = 2iGabb

b, (A.5)

KTα = KT̄α
= −2vα

κ
,

where we used from (2.6) that (τ − τ̄) = 2ie−φ and (G − Ḡ)a = −(τ − τ̄)ba = −2ie−φba.

Then,

Kτ τ̄ =
e2φ

4
+ eφGabb

abb +
9

16κ2
Gαβκαabb

abbκβcdb
cbd,

KGaτ̄ = KτḠa = eφGabb
b +

9

8κ2
Gαβκαabb

bκβcdb
cbd,

KTα τ̄ = −KτT̄α
= − 3i

4κ2
Gαβκβabb

abb,

KGaḠb = eφGab +
9

4κ2
Gαβκαacb

cκβbdb
d, (A.6)

KTαḠa = −KGaT̄α
= − 3i

2κ2
Gαβκβabb

b,

KTαT̄β
=

Gαβ

κ2
.

The inverse metric can be found after a lengthy calculation, which goes as follows. One

can make an ansatz for each of the elements of the inverse metric from the number of

free indices, e.g. the component KTατ̄ has only one free lower index α as opposed to

the upper index of the original metric component. Therefore, a possible ansatz could be

KTα τ̄ = aκα + bκαabb
abb, where a and b can be any expression with fully contracted indices

(or with no indices at all). Plugging the ansatz for every element of the inverse matrix
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leads to 9 coupled equations which lead to unique determination of all components. For

the specific example, we find a = 0, b = 3ie−φ. Explicitly, the whole inverse metric is:

Kτ τ̄ = 4e−2φ,

KGaτ̄ = KτḠa
= −4e−2φba,

KTατ̄ = −KτT̄α = 3ie−2φκαabb
abb,

KGaḠb
= e−φGab + 4e−2φbabb, (A.7)

KTαḠa
= −KGaT̄α = −3ie−φ

2
Gabκαbcb

c − 3ie−2φκαbcb
bbcba,

KTαT̄β = κ2Gαβ +
9e−φ

4
Gabκαacb

cκβbdb
d +

9e−2φ

4
καabb

abbκβcdb
cbd.

Having found the inverse metric and the first partial derivatives (A.5), to obtain eq. (3.3)

is down to some trivial algebra. However, it might be quite interesting in which way one

gets the number 4. We can break up the sum into two parts - a sum which runs over all

Tα and Ga but not over the dilaton, plus the remainder of the whole sum (i.e. where at

least one of the indices goes over τ). Then,

Kij̄KiKj̄ = 3 + 9e−2φ

(

καabv
αbabb

κ

)2

, i, j = T1 . . . T
h
(1,1)
+

, G1 . . . Gh
(1,1)
− , (A.8)

while for the remainder one gets 1 − 9e−2φ
(

καabv
αbabb

κ

)2
as expected since the two sums

add up to 4.

A.2 Perturbative α′-corrections

In order to simplify notation, we first use the following definitions:

ξ̂ ≡ ξ

2(2i)3/2
,

Y ≡ VCY +
ξ

2

(

τ − τ̄

2i

)3/2

=
κ

6
+ ξ̂(τ − τ̄)3/2. (A.9)

In the following we will drop the hat of ξ̂ and will use this new definition until the end of

the section where we switch to the proper definition. With these identifications, the Kähler

potential takes a misleadingly simple form:

K = − ln(−i(τ − τ̄)) − ln(Y ). (A.10)

However, Y is now dependent on all variables. Its partial derivatives are:

∂Y

∂Tα
=

∂Y

∂T̄α
=

vα

6
∂Y

∂Ga
= − ∂Y

∂Ḡa
= − i

4(τ − τ̄)
κab(G − Ḡ)b (A.11)

∂Y

∂τ
= −∂Y

∂τ̄
=

i

8(τ − τ̄)2
κab(G − Ḡ)a(G − Ḡ)b +

3

2
ξ(τ − τ̄)1/2,
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where we define κab, καβ as in the previous subsection. However, we slightly change the

definition of Gαβ , Gab:

Gαβ ≡ −Y

9
καβ +

1

18
vαvβ, Gab ≡ −κab

4Y
. (A.12)

Their corresponding inverses are

Gαβ = −9καβ

Y
+

κακβ

2Y
(

−Y
9 + κ

18

) , Gab = −4Y κab. (A.13)

With these, and using (τ − τ̄) = 2ie−φ, (G − Ḡ)a = −(τ − τ̄)ba = −2ie−φba,

Kτ = −Kτ̄ = − 1

τ − τ̄
− i

4(τ − τ̄)2Y
κab(G − Ḡ)a(G − Ḡ)b −

−3ξ(τ − τ̄)1/2

Y
=

ieφ

2
+ iGabb

abb − 3ξ(2i)1/2e−φ/2

Y
,

KGa = −KḠa =
i

2(τ − τ̄)Y
κab(G − Ḡ)b = 2iGabb

b, (A.14)

KTα = KT̄α
= − vα

3Y
.

The metric then takes the form:

Kτ τ̄ =

(

e2φ

4
+

3ξeφ/2

2(2i)1/2Y
− 9iξ2e−φ

Y 2

)

+

+

(

eφ +
3iξ(2i)1/2e−φ/2

Y

)

Gabb
abb +

9

16Y 2
Gαβκαabb

abbκβcdb
cbd,

KGaτ̄ = KτḠa =

(

eφ +
3iξ(2i)1/2e−φ/2

Y

)

Gabb
b +

9

8Y 2
Gαβκαabb

bκβcdb
cbd,

KTα τ̄ = −KτT̄α
= − 3i

4Y 2
Gαβκβabb

abb − ξ(2i)1/2e−φ/2

2Y 2
vα,

KGaḠb = eφGab +
9

4Y 2
Gαβκαacb

cκβbdb
d, (A.15)

KTαḠa = −KGaT̄α
= − 3i

2Y 2
Gαβκβabb

b,

KTαT̄β
=

Gαβ

Y 2
.

The inverse metric is found along the procedure from the previous subsection, described

after eq. (A.6). For easier reading, we will write down the ansatz for the inverse metric
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and give the resulting prefactors separately.

Kτ τ̄ = a,

KGaτ̄ = KτḠa
= bba,

KTατ̄ = −KτT̄α = cκαabb
abb + dκα,

KGaḠb
= lGab + mbabb, (A.16)

KTαḠa
= −KGaT̄α = eGabκαbcb

c + fκαbcb
bbcba + qκαba,

KTαT̄β = gGαβ + hGabκαacb
cκβbdb

d + j1καabb
abbκβcdb

cbd +

+j2(κακβabb
abb + καabb

abbκβ) + j4κακβ .

The corresponding prefactors are

a =
2
(

−Y
9 + κ

18

)

2
(

−Y
9 + κ

18

)

(

e2φ

4 + 3ξeφ/2

2(2i)1/2Y
− 9iξ2e−φ

Y 2

)

+ iκξ2e−φ

Y 2

b = −a

c =
3i
(

−Y
9 + κ

18

)

2
(

2
(

−Y
9 + κ

18

)

(

e2φ

4 + 3ξeφ/2

2(2i)1/2Y
− 9iξ2e−φ

Y 2

)

+ iκξ2e−φ

Y 2

)

d = − (2i)1/2ξe−φ/2

2
(

−Y
9 + κ

18

)

(

e2φ

4 + 3ξeφ/2

2(2i)1/2Y
− 9iξ2e−φ

Y 2

)

+ iκξ2e−φ

Y 2

e = −3i

2
e−φ

f = −c

q = −d

g = Y 2 (A.17)

h =
9

4
e−φ

j1 =
9
(

−Y
9 + κ

18

)

8
(

2
(

−Y
9 + κ

18

)

(

e2φ

4 + 3ξeφ/2

2(2i)1/2Y
− 9iξ2e−φ

Y 2

)

+ iκξ2e−φ

Y 2

)

j2 =
3iξ(2i)1/2e−φ/2

4
(

2
(

−Y
9 + κ

18

)

(

e2φ

4 + 3ξeφ/2

2(2i)1/2Y
− 9iξ2e−φ

Y 2

)

+ iκξ2e−φ

Y 2

)

j4 = − 2iξ2e−φ

(

−Y
9 + κ

18

)

(

2
(

−Y
9 + κ

18

)

(

e2φ

4 + 3ξeφ/2

2(2i)1/2Y
− 9iξ2e−φ

Y 2

)

+ iκξ2e−φ

Y 2

)

l = e−φ

m = a.

Clearly the inverse metric in this form is not very suitable for calculational purposes. As

we are interested in the large volume behavior, we can expand the coefficients a, . . . ,m

and take the leading terms in the limit where VCY → ∞. In order to calculate Kij̄KiKj̄
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exactly upto O(V
−5/3
CY ) we also need some of the subleading terms of the inverse metric.

With this choice of relevant accuracy, we obtain:

Kτ τ̄ ≈ 4e−2φ − 24ξe−7φ/2

(2i)1/2VCY
,

KGaτ̄ = KτḠa ≈ −4e−2φba,

KTατ̄ = −KτT̄α ≈ 3ie−2φκαabb
abb − 9ξ(2i)1/2e−5φ/2

VCY
κα,

KGaḠb ≈ e−φGab + 4e−2φbabb, (A.18)

KTαḠa
= −KGaT̄α ≈ −3ie−φ

2
Gabκαbcb

c − 3ie−2φκαbcb
bbcba +

9ξ(2i)1/2e−5φ/2

VCY
καba,

KTαT̄β ≈ Y 2Gαβ +
9e−φ

4
Gabκαacb

cκβbdb
d +

9e−2φ

4
καabb

abbκβcdb
cbd +

+
27iξ(2i)1/2e−5φ/2

4VCY
(κακβabb

abb + καabb
abbκβ) − 81iξ2e−3φ

V 2
CY

κακβ.

Now we can calculate Kij̄KiKj̄ and we find it again equal to 4 as in the tree level case (3.3).

This time the 4 comes as follows:

Kij̄KiKj̄ = 3 +
e−2φ|W |2

4V 2
CY

(καabv
αbabb)2 − 6ξ̂e−3φ/2

(2i)1/2VCY
+ O(V

−5/3
CY ),

i, j = T1 . . . T
h
(1,1)
+

, G1 . . . Gh
(1,1)
− , (A.19)

and the remainder is what is left such that the sum is 4. Note that we still have ξ̂ depen-

dence, and if we switch to ξ we recover the standard term that appears in the literature

(c.f. (17) of [6]):

− 6ξ̂e−3φ/2

(2i)1/2VCY
=

3ξe−3φ/2

4VCY
.

B. Proof for the existence of minima of the moduli potential in the b
a-

directions

Here we present an extensive argument to show that the moduli potential V in its form (5.7)

will always exhibit at least one minimum with respect to the moduli in question, κs, VCY,

and h1,1
− ba’s. The argument can be trivially extended for the case of many small 4-cycles

κsi (c.f. eq. (5.13)).

Apart from the coefficients α, β, γ, we see that the potential V (5.7) depends on ba

only through κsabb
abb. Therefore, let us define x ≡ κsabb

abb and take V as a function of

only x, κs, VCY. We will then consider all possible cases of scaling of β and γ with x (α

does not really depend on x since any change in the ba’s only changes the value of ρs at its

minimum and leaves α the same). So,

V (x, κs, VCY) = −α
κse

−κsex

V 2
CY

+
β(x)

V 3
CY

+
γ(x)

√
κse

−2κse2x

VCY
, (B.1)
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where we implicitly absorbed additional constants in the definitions of α, β, γ, κs, x in order

to simplify notation and without any loss of generality. Note that here α, β, γ are always

strictly positive, while x ∈ (−∞,+∞) (for a completely generic matrix κsab) and κs, VCY ∈
(0,+∞). Since V : R×R

+×R
+ 7→ R we cannot really picture it, but we will present three

slices of V at different values of x: 0 and ±∞. Then we will be able to draw conclusions

on how the potential looks everywhere.

• x → −∞:

lim
x→−∞

V =
β(x → −∞)

V 3
CY

.

Since β(x → −∞) is always positive (in this limit it is in fact going to positive

infinity), we see that for all values of κs, VCY the potential remains positive and

vanishes from above when VCY → ∞.

• x = 0:

V = −αLVS
κse

−κs

V 2
CY

+
βLVS

V 3
CY

+
γLVS

√
κse

−2κs

VCY
.

Here the standard LVS is reproduced, the potential V is large positive for small values

of κs, VCY, then goes below zero as they increase, and approaches zero asymptotically

from below as VCY → ∞. The minimum of the potential is at κs ≈ ln(VCY) and

some finite value of VCY that depends on the coefficients and is not relevant for the

argument here.

• x → ∞:

lim
x→∞

V = −α
κse

−κse∞

V 2
CY

+
β(x → ∞)

V 3
CY

+
γ(x → ∞)

√
κse

−2κse2∞

VCY
.

This case is particularly subtle and we need to split it into a few subcases.

For finite κs we see that the last term is largely dominant as it rises squarely faster

than the first term. This makes the potential always positive for finite values of the

volume. When VCY → 0 the second term will make sure the potential never goes

negative.

On the other hand, when κs goes faster to ∞ than x the second term will dominate

everywhere and the potential is positive and only vanishing as VCY → ∞.

The most subtle case is when κs goes to infinity together with x. Then, ex−κs will

remain finite and

lim
κs→x,x→∞

V = lim
x→∞

−α
x

V 2
CY

+
β(x)

V 3
CY

+
γ(x)

√
x

VCY
.

Consider β = const. + (κabb
abb)2

VCY
. x → ∞ only when at least one of the ba’s goes

to infinity. But then, since κab is negative definite, (κabb
abb)2 will necessarily also

become infinite. Therefore, in the limit x → ∞ the second term will always scale as
x2

V
10/3
CY

(remember that κab ≡ καabv
α). The scaling of γ(x) is less clear, but this is not
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important for our argument. We can even neglect the γ term completely (since in

any case it gives a positive contribution) and still prove our point. The potential is

then simply − α′

V 2
CY

+ β′

V
10/3
CY

with the x-dependence hidden in α′ ∼ x, β′ ∼ x2. Then it

is straightforward to minimize the potential in the volume direction, and the value

of the potential at the minimum is

Vmin = − 6
√

3α′5/2

25
√

5β′3/2
∼ − 1√

x
⇒ lim

x→∞
Vmin = 0.

The minimum of the potential increases with x, so although V can be (infinitesimally)

negative, its real minimum will not be at x → ∞ but at some finite value of x.

We have exhausted the limiting cases and showed there is no runaway direction for x

and it must remain finite in order to minimize V . And for finite fixed x = x0 the potential

will have no runaway directions in the κs and VCY directions. This is the case because

the standard LVS (x0 = 0) behavior of the potential will still hold, only that for x0 6= 0

the relative weight between the coefficients αeff ≡ αex0 , βeff = β(x0), γeff = γ(x0)e
2x0 will

change, effectively changing the values of κs, VCY at the corresponding AdS minimum.

Since βeff always remains positive, κs, VCY will be finite at the minimum and the minimum

itself will be at a finite value Vmin (c.f. appendix A of [33] for a detailed proof).

Now we can safely claim that in all cases the full potential V (x, κs, VCY) will be min-

imized at a point or points inside the domain of the variables, i.e. x, κs, VCY will all have

finite values at the minima. We are unable to specify the number of minima, but we know

there will be at least one since the minimum of the potential is finite and negative at the

LVS slice x = 0, κs ≈ ln(VCY), while on the boundaries of its domain it is positive or

vanishing. This concludes our proof for the existence of minima of (5.7).

References

[1] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102].

[2] M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423

(2006) 91 [hep-th/0509003].

[3] S. Kachru, R. Kallosh, A. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys.

Rev. D 68 (2003) 046005 [hep-th/0301240].

[4] J. Michelson, Compactifications of type IIB strings to four dimensions with non-trivial

classical potential, Nucl. Phys. B 495 (1997) 127 [hep-th/9610151];

S. Kachru, M.B. Schulz and S. Trivedi, Moduli stabilization from fluxes in a simple IIB

orientifold, JHEP 10 (2003) 007 [hep-th/0201028];

O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and brane

worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123].

[5] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097].

[6] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli

stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058].

– 27 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C79%2C733
http://arxiv.org/abs/hep-th/0610102
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C423%2C91
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C423%2C91
http://arxiv.org/abs/hep-th/0509003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C046005
http://arxiv.org/abs/hep-th/0301240
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB495%2C127
http://arxiv.org/abs/hep-th/9610151
http://jhep.sissa.it/stdsearch?paper=10%282003%29007
http://arxiv.org/abs/hep-th/0201028
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C066008
http://arxiv.org/abs/hep-th/0208123
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C106006
http://arxiv.org/abs/hep-th/0105097
http://jhep.sissa.it/stdsearch?paper=03%282005%29007
http://arxiv.org/abs/hep-th/0502058


J
H
E
P
0
1
(
2
0
0
9
)
0
4
6

[7] J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli

spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076].

[8] K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α′-corrections to

flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254].

[9] M. Berg, M. Haack and E. Pajer, Jumping through loops: on soft terms from large volume

compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737].

[10] E. Witten, Non-perturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343

[hep-th/9604030].

[11] R. Kallosh and D. Sorokin, Dirac action on M5 and M2 branes with bulk fluxes, JHEP 05

(2005) 005 [hep-th/0501081];

R. Kallosh, A.-K. Kashani-Poor and A. Tomasiello, Counting fermionic zero modes on M5

with fluxes, JHEP 06 (2005) 069 [hep-th/0503138];

P.S. Aspinwall and R. Kallosh, Fixing all moduli for M-theory on K3 × K3, JHEP 10 (2005)

001 [hep-th/0506014];

E. Bergshoeff, R. Kallosh, A.-K. Kashani-Poor, D. Sorokin and A. Tomasiello, An index for

the Dirac operator on D3 branes with background fluxes, JHEP 10 (2005) 102

[hep-th/0507069].

[12] L. Görlich, S. Kachru, P.K. Tripathy and S.P. Trivedi, Gaugino condensation and

nonperturbative superpotentials in flux compactifications, JHEP 12 (2004) 074

[hep-th/0407130];

P.K. Tripathy and S.P. Trivedi, D3 brane action and fermion zero modes in presence of

background flux, JHEP 06 (2005) 066 [hep-th/0503072];
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